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CHAPTER I

INTRODUCTION

In mos t practical situations , the data one has in hand

do not follow the normal distribution ; if the data were nor-

mal , one could use all of the procedures in multivariate

analysis which apply to normally distributed data. In this

paper , a routine method for making the data follow the nor-

mal distribu Lion more closely is discussed ; this method is

to transform the data.

The idea of using certain transformations before

analyzing data is well known . Two of the most common trans-

formations which are usually introduced in an elementary

analysis of variance course are the log transformation and

the reciprocal transformation. These are special cases of

the family of power transformations which was introduced in

a paper by Box and Cox (1964). The family of transformations

is given by

( A )  = - l  x ~ 0
Y A

log y X=O

Several methods are available for estimatin g the value of A

which will make the data most closel y norm .~.l. These esti-

mators and related tests of the hypothesis A are d i s-
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cussed in the second part of the paper.

Al so included is a s ummary of the analysis of two ex-

periments w h i c h  are in t roduced  in the paper  by Box and Cox .

The power  of the t e s t s  is s t u d i e d  b r i e f l y , u s i n g  the  r e s u l t s

given in an example found in a paper by Atkinson (1973).

In the third section we discuss the influence curve

of an estimator , which is an indicator of the influence of

an observa tion on the est ima tor. The influence curves of

several robust estimators of location are g iv en , to intro-

duce the concept. Then the ide a of the influence curve is

applied to the estimator of A

Another purpose of the paper is to further study the

power of the tests which are introduced in the second section.

This study of the power follow s the method which was out-

lined in the example in the paper by Atkinson. This examp le ,

which uses the biolog ical data from the Box and Cox paper ,

is used as the basis for a series of simulations. These

simulations are performed using data other than normally

distributed , to indicate the robustness of the tests , as well

as the power of the tests under distributions othe r than

the normal. The results of these simulations are g iven later

in the paper.

~~~
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CHAPTER I I

E S T I M A T E S  Oi l’ ILL BEST T RANS FORMA l’ I ON

Bo x and Cox ( 1 9 6 4 )  w o r k e d  w i t h  t he  ob s e r v a t i o n s

,y~~, a r r a n g e d  in a n x l  v e c t o r  v , a n d  d e f i n e d  t h e  f a m -

l i v  o f t r ans f o rm a t i o n s

~ ~~ = ( (\ . (A ) )) -~~y~~ - l  i f A  ~ 0 
(1)

t log y~ i f  A 0

w h e r e  A is a parameter to be estimated . They assumed that
( A )

f o r some \ the transformed observations v w o u l d  he  nor-

m a l l v  d i s t r i b u t e d  and w o u l d  s a t i s f y the  l i n e a r  m o d e l

(A )
E [ y  I = x ~

w i t h co n s t a n t e r r o r v a r i a n c e s  and absence of interact ions .

h e re  
~ 

is a matrix of constants and ~ i s  a v e c t o r  of par a-

m e t e r s .

The  p r o b l e m  t h a t  we w i s h  to  e x a m i n e  is the  e s t i m a t i o n

of A . In  the  paper  by Box and  Cox , t h e  m e t h o d  of m a x i m u m

l i k e l i h o o d  was used  to  f i n d  t h e  v a l u e  of \ f o r  w h i c h  t h e

da ta w o u l d  m o s t  c l o s e l y  f o l  low a n o r m a l  m o d e l  w i t h  c o n s t a n t

v a r i a n c e s  and no i n t e r a c t i o n s .
( \  )

If V is the vector of t r a n s f o r m e d  o b s e r v a t i o n s ,



4

the maximized log likelihood is

Linax(A ) = -~ n log 02
(A ) + (A -l) l:log Y . (2)

where ~
2 (A) = 

I y (Ay A~ (A) is an estimate of the error

variance o
2and A = I - X ( X ’ X ) ~~~X ’

Using this maximi zed log likelihood , there are two

ways by which an estimate of A can be found. One way is to

p lot Lmax (A) versus A , find the point which maximizes the

likelihood and choose that point to be the estimate ~ of A

Another way to find A is to take the derivative of

the likelihood function , equate it to zero and thus find

the estimate of A . This method should be used if more pre-

cision is desired than that given by p lotting the likelihood

function. The derivative of Lmax (A) with respect to A is

d) 
Lmax ( A ) = n ~ (A )t AU (A) + n + E log y 1 (3)

A ) A~ ( A )

or multi plying throug h b y  ~~~~~~
‘ (A) (A ~ ‘ (A~ ~~ ‘

= -n ~~~“ “ Au + n “ “ A~ ‘ + (X ” ‘ Ay’ )) 1 log y
~

to give a form which is easier to use. On equating this to

zero , we would obtain the maximum likelihood estimate of

where is the vector with components (i~ 1
A 

log y~ ).

To simplif y the problem we could consider the normal-

ized observations

~
(A )  

= 
( A )  / j  l/~ (4)

n ( A )
where J = J ( A  ; X) = 

II 
dy~ .

i=i dA

Using the transformations (1), we now get
— 2

Linax(-~ ) = 
~i n log  0 (A ; :)
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( A ~ ’ ~~where 
~~
“ ( A ;~~) = z -‘ Az A / n .

H e r e  ( A )  
= ((z~~ ~ ) )  = \~~A 1 ( 5 )

AY A -
where  )~ is the  g e o m e t r i c  m ean of the  o b s e r v a t i o n s .

Box and Ccx considered two examples in their paper ,

a biolog ical example and a textile examp le. The biolog ical

examp le was a 3 x 4 factorial experiment with the two fac-

tors poisons and treatment s. They used the transformations

(1) and found the value A = -0. 75 to be the maximum likeli-

hood estimate of A .  Thus the familiar reciprocal trans-

formation with A = -l was used , because the results were

easier to analyze using this transformation and because

customaril y a more familiar transformation should he used.

The textile examp le was a 33 experiment. For this examp le

they considered the normalized observations :(> ‘
~ and f ound

the maximum likelihood estimate of A to he ~ = -0.06.

Thus for this example they used the log transformation w i t h

~
= 0, because the data was easier to analyze and because the

log transformation is more familiar.

One problem with the method used by Box and Ccx is

that they assumed that for some A , the transformed ob-

servations followed a normal mode l wi th constant error

variances and no interaction s. It is hard to believe that

for any data vector to he considered , there exists a value

of which satisfies these conditions exactl y .

A pape r by Draper and Ccx (1969) addressed this prob-

1cm. In their paper , the conjecture was t h a t  even if these

~~~~ ~~ ~~hiiii r._ ~ .., -_— _-_ -- -~ - ~~~~~~~~~ --~~~-- - - _ “ ‘~~~~~~~~~~~~~~~~~~~~ 
- —

~~~~~~ 
-
~~~
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t h r e e  c o n d i t i o n s  c o u l d  not  be s a t i s  f i e d  as exactly for any

the estimate of A found by the Box and Ccx method mi ght

still be of interest. They showed by examp le t h a t  fo r t h i s

e s t i m a t e  o f \ , the resulting distribution was c l o s e  enoug h

to normal to he useful. One problem they found was that

the sample size would have to he quite large before the

r e ;u l t i n g  e s t i m a t e  of A was precise. This precision was

measured by finding the variance of the estimate A

Another paper in which th~ Box and Cox transformations

were considered was a pape r  by S c h l e s s e l m a n  ( 19 7 1 ) .  In  h i s

pape r , he stated that the maximum likelihood estimate was

not invariant under scaling of the ori ginal observations from

Yto wYunless the X matrix from the linear mode l contained

a column of ones or , in o ther  words , an a d d i t i v e con s t a n t

could be removed from the model. In most practical situ-

ations , the mode l is defined in such a way that the X

matrix does allow for removal of an additive constant;

therefore , this problem is not important.

In  a paper  by A t k i n s o n  (1973) , the Box and Ccx ma xi-

mum likelihood test statistic was e x p r e s s e d  in the f o r m

TL 1 -2 ( Lmax(  Ao) - Lmax(  
~) } (6)

where ,~ is the estimate of A from the maximum likelihood

method and A is the exact value of A . Since TL 
2 has an

asymptotic -~~~~~~ distribution , the statistic T1 has a standard

normal asymptotic distribution. Since this statistic has

an asymptotic norma l distribution , a test was desired which

- —L — - - —
~~~~~~_---- -
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would have an exact distribution. Exact tests could thus be

made instead of tests depending on an asymptotic distri-

hut i on.

Andrews , i n a 1971 p a p e r , derive d an exact test

statistic for testing A A 0 which also had the advantage of

being computationall y simpler than the maxim um likelihood

statistic. To derive his test statistic , Andrews started

w i t h  the  t r a n s f o r m a t i o n s  (1) and assume d t h a t  f o r  some A

the vector of transformed observations could be ex-

pressed in the form

( A)
+ e (7)

w h e r e  -X and ~ are as d e f i n e d  p r ev ious ly  and e is the vec to r

of e r ro r s , w i t h  mean 0 and variance a 2
y

(Ao)He assume d that the value s , which are the trans-

formed observations at the true value of A , follow a Taylor

expansion about Ao given by

( A 0) (8 )
X X ) 3 + v ( A - A 0 )  +

where the r ema inde r  terms in hi gh er powe rs of A were ig-

nored. The vector v was define d by

V 
= ((v1 )) = ~y~~

( A) 
(9)

The v e c t o r  V depends on so we must somehow modify this

vec to r  to c o n s t r u c t  a t es t  s t a t i s t i c .  T h i s  w a s  a c c o m p l i s h e d

by c a l c u l a t i n g  the  v e c t o r  ~ d e f i n e d  by
~~= ((vj)) = ~y .(A )

________ (10)

- 
A = X o , � = ~~

I

— —

~

-‘ 

.- “
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w h e r e  the value s 9 are the fitted values of ~~~, g i v e n  b yX =

(X’X) ’X ’X ~~~) . The test statistic was then derived using

the method given in Mil liken and Gray bill (1970). The re-

sulting statistic was
(k),

= -

S
)
~ 
{~~‘A~ 2 

(11)

(as expressed in Atkinson) where 5y is an estimate of the

error variance ~Ty
Z. This statistic has an exact t distri-

bution; it would have a standard normal distribution if the

variance ~2 were known .

One good aspect of Andrews ’ test is given i’i h i s  c l a i m

t h a t  h i s  t e s t  is less  s e n s i t i v e  to o u t l i e r s , and by 1mp h -

cation to distributions with heavier tails than the normal.

Andrews suppor t s  his  cla 1ms by a n a l y s i s  of Box and Cox ’ s tw o

examples using his test for both of the Box and Cox e x a m p l e s

and a l s o  fo r  the biolog ical example with one additional out-

h e r  added. His  test is affected much less than the maximum

likelihood test by addition of the outlier. One purpose of

t h is wo r k is to co n s t r uc t a m ore formal study of Andrews ’

conjecture by making an analysis us ing heavier-tailed dis-

tributions than the normal distributions from Box and Cox ’ s

examp le s.

In the paper by Atkinson , a comparison of three teats

was g iven . The t h ree  t e s t s  were  the Box and Cox and A n d r e w s

tests and a n o t h e r  t e s t  de r ived  by Atkin son . Atkinson de-

cided to consider another test for two reasons: he wanted

a test which was easy to compute and had hi gher power t h a n

the others , and also a test which did not neg lect the re-

mainde r as the Andrews test did.
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Atkinson expressed his test in the form which follows ,
(A )

u s i n g  t he t r a n s f o r m e d  observations g i ven in ( 5 ) :

= - ~~

~ z (~ (z) ‘AW (ZJ h
( A )

w h e r e  w ’~~~=~~: /~~A and s~ is  an es t im a t e  o f t h e vai- i-

ance ~ o f t h e  v al ues ~
( A) ‘Ihe test he derived was a

form of the locall y most p o w e r f u l  t e s t .

In order to compare the three test statistics T
L,

and  TD ,  A t k i n s o n  p e r f o r m e d  a series of simulations using

the mode l g iven  in Box and Cox ’ s b i o l o g i c a l  e x a m p l e .  To

d e t e r m ine  t he p ower  of these tests , simulations were per-

formed using different values of A and the percentage of

tests which were si gnificant in each case was counted. lie

also gave a p lot of these results , which indicated that

-\ n d r e w s ’ t e s t  TA was much  less  powc- r f u l  t h a n  t h e  o t h e r

two , e s p e c i a l ly at  l a rge  d i s t a n c e s  f rom the  t r u e  v a l u e  o f A

b ut t ha t  the o t h e r  two t e s t s  were  s i m i l a r  in p o w e r .

I t is qu e s t i on a b l e  ho w good the  r e s u l t s  i n A t k i n son ’ s

paper are because he only considers one numerical example.

lie mentions this problem briefl y, but since he has only done

t hi s one ex am p le , t he  co n cl u s i o n s  m u s t  be b a s e d  on the  re-

suits of h i s  example. Later in this paper , the results of

f u r t h e r  s i m u l a t i o n s  w h i c h  were  p e r f o r m e d  in  t h i s  m a n n e r

using distributions other than normal will be given.

A l l  of the  t e s t s  w h i c h  have  thus  f a r  been c o n s i d e r e d

were constructed on the assumption that for some A , the

transformed observations
~~~~

’
~ will follow a normal distri-

hution . In  a l a t e r  p ap e r  b y I h i n k l e y  ( 1 9 7 5 ) ,  r ob u st  a n a l y s i s

—

~

---- --—— — -- —-— - -----—--- -~—~‘——---- -—~—‘— -.~ - --~~~ .—- ~~~~~
----—-

~~ -- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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was used to find another way to estimate A . In this paper ,

he d id  n ot ass ume any distribution for the transformed oh-

s e rv a t i o n s .  lie w i s h e d  to f i n d  a value of A f o r  w h i c h  the

transformed observations had a symmetric distribution.

If there are n independent and identically distributed

random v a r i a b l e s  Y i ,  . . ~n ,  then the v a l u e  of A for which

t h e  I~ a nd 1-p q ua n t i t i e s  are s y m m e t r i c  about  the m e d i a n  i s

the value that is desired. Since this will be expressed

in  te rms of the ordered  values of Y1, .. , they will

be de n o t ed  hy 1< .. . . The va lue  of A t h a t  is d e s i r e d

is the value for which

~ 
A
~X r

A 
= Xn~ i’+1 - ~ A (13)

where  r = [np ] ~nd X is the m e d i a n  of the random v a r i a b l e s .

The two solutions to this equation are A = 0 and a n o t h e r

s o l u t i o n  which  h l i n k l e y  c a l l s  T. He e x c l u d e s  the  va lue  A = 0

un le s s  X / X r X n~.r+j /X and he a l so  r e w r i t e s  t h e  e q u a t i o n

as

(X r/X) 
A 

+ (X n r ÷ i/X)  A 
2. (14)

f l i n k l e y  s t a t e s  t h a t  the  e s t i m a t e  T of A has  an asymptotic

n o r m a l  d i s t r i b u t i o n  and he d e r i v e s  the  a s y m p t o t i c  v a r i a n c e

o f T .

In  h i s  d i s c u s s i o n , H i nk l ey  a l s o  s t a t e s t h at  pr obl em s

may arise when more complex models are used. lie refers to

the Box and Cox biolog ical examp le :‘nd states that different

e s t i m a t e s  of A may he found a c c o r d i n g  to which sets of cell

means  are e x a m i n e d .  T h i s  is  a l a r g e  p r o b l e m  because  m o s t  

-- - - - ~~~~~~~~~~~~~ ~~~~~~- - ~~~~~~~~~~~~ 
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models that we wish to analyze will be similar to the Box

and Cox examp le. We need an estimate of which can also

be used  in these  cases . T h e r e f o r e  the  H i n k l e y  e s t i m a t e  is

only usefu l in certain simplified cases , and not in more

comp lex cases.

We see t h a t~~of t he f o u r  e s t i m a t e s  and t e s t  s t at i s t i c s

which we ha ’ie considered ,the ev idence  g iven to date  in-

dicates that the Atkinson test would probabl y be preferred

over the other three. It is easier to compute than the

maximum likelihood statistic , POssiblY more powerful than

Andrews ’ test statistic and useful in more cases than the

I l i n k l e y  e s t i m a t e .

In th is  p a p e r , the c o n j e c t u r e s  made by the other

authors will he analyzed further. We have seen that prob-

lems may occur when distribu tions with heavier tails than

the normal distribution are considered. The results of

simulations performed using such distrib utions will be g iven

and the power of the Andrew s and Atkinson test statistics

will be further considered.

_

~ -



CHAPTER I I I

I N F L U E N C E  CURVES

The i n f l u e n c e  curve is a u s e f u l  m e t h o d  of r e p r e s e n t i n g

how the behavior of a sing le observation affects an esti-

mator. It indicates how this single observation , which may

be an o u t l ier , changes  the  value of the estimator , so it

is a measure of robustness. It is actuall y an e x p r e s s i o n

of the  f i r s t  d e r i v a t i v e  of an e s t i m a t o r , ev al u a ted  a t a

c e r t a i n  d i s t r i b u t i o n .

The i n f l u e n c e  curve w i l l  be denoted  IC ( x ;  T , F)

where  T is the e s t i m a t o r  in w h i c h  we are i n t e r e s t e d  and F

is the distribution at which it is evaluated. Let 
~

be the function defined by 
~ 

( ) = 0 for y < x
~~

y ( i r  
-

~ ~or ~~~~~~ ~~

If we view T as a functional depending on F , and denote it

T ( F ) ,  the i n f l u e n c e  curve is defined in Hampel (1974) as

IC ( x ;  T , F) = li ,~ {T ( l -  i ) F + c ~S~ 
T(F)  ~~ (1)

Thus i t  is e v i d e n t  t h a t  the i n f l u e n c e  curve  is  the  f i r s t

d e r i v a t i v e  of the  e s t i m a t o r  T a t  the  d i s t r i b u t i o n  F.

I f  F~ is the e m p i r i c a l  d i s t r i b u t i o n  f u r  L i o n  b a s e d

on a sample X 1, . . . , X~~, the behavior of an estimator

T (F) is described by

T 
~

1 n~ 
- T (F) - 

~I C ( X .  ;T , F )  U , (~~)



and thus
L

n ~(T ( F 11) - 1’ (F) )~~N(0 , j~IC (x;T ,F) ) ~dF ( x ) ) .  (3)

‘l’here f o r e  it is evident from (2) that the i n f l u e n c e  cu rve

describes the “influence ” of a particular observation on

1’ (F~ )

A simp le example of an influence curve , g iven in

Ilampel , is the influence curve of the arithmetic me ar

T = f xdF (x)  e v a l u a t e d  at  any distribution F which has a

f i n i t e  f i r s t  m o m e n t .  I f  the  mean of F is ~ , then the in-

fluence curve is

IC (x ;  T, F) l~~~
[(l- c)u+E x I l 1 

~c
~~

o
x_u .

Thus the i n f luence  of a p o i n t  x on the a r i t h m e t i c  me an is

a s i m p le l i n e a r  f u n c t i o n  of the p o i n t  x , also depending on

the mean JIl of the distribution. This influence curve is

unbounded , which implies that the arithmetic mean is

not a robust estimator. A plot of this influence curve is

given in Figure 1. Plots are also given of several other

robust estimators in the following figures. These robust

estimators will fall into two classes: trimmed means and

M- estimators . Most of the results will be taken either

from a book by Andrews and several others (1972) or a paper

by Carroll and Wegmar i (1975).

One s i m p l e  robust estimator of interest is the trimme d

mean . The ~ — t r i m m e d  mean  ( f o r  O~~’ ~~
) is f o u n d  b y

o r de r i n g t he  obse rv a t i o n s  in a samp le , deleting the tT~

smallest and 
~~~ largest observations , a n d  finding the

arithmetic mean of the rest. The med i an of t he  s a m p  h e  i s
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seen to be the .50-trimmed mean. To find t h e  influence

curve of the  t r i m m e d  mean , w e n eed t h e exp r e s s i o n fo r the

a trimmed mean of any distribu tion F , which is

f ~~~~~F~~~( t ) d t /  ( 1 -2 a)  (from i-iampel).

The influence curve for the c~. trimme d me an in the special

case of F being a symmetric distribution is g iv en by

IC (x ;T ,F) = F~~ (a)/(1-2 ~) f or x < F~~~(a)
x/(1-2ct) for F l(a) ~x _<F ’ (1-a)

- F (l a)/(1 2a) for x

If the distribution F is asymmeLric , the expression for the

influence curve is more comp licated. For~~= ½, the median ,

assuming that F has a density f which is symmetric about

zero , the influence curve is

IC (x; T , F ) = si gn (x) (5)
2f(0)

Thus , f o r  th e tr imme d mean , the influence curve is bounded ,

so the trimmed mean is a robus t estimator. A plot of the

influence curve of the .10 - t r i m m e d mean is given in Fi gure

2.

Another class of robus t estimators of interest is the

class of M - estimators , which show very good robustness

properties. As given in  C a r r o l l  and W egman , M - e s t i m a t o r s

ar e so lu t ions , denoted by 1, of an equation of the form

(x~ -T) 0 , (~~)

•j =l  
_____

5

where  ~ is an odd f u n c t i o n  and s is a s ca l e  e s t i m a t e .  The

estimate s can either he found independently or from an

e q u a t i o n  of the  f o r m

________
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~ A I X J - T )  
= (7)1 , 

.-;!

w h e r e  
~ 

is an even function. For Uuber  e s t i m a t e s , choose

~~~ x ;k  ) = f - k  x < -k
x - k < x < k  (8 )

[ k x >k

use a specified function x in (7), and solve simultaneousl y

for 1’ and S.

The same 1v function has also been used (by Ilampel) a-

long with s=me d
~x~~ 5O %I /.6754 to give a different estimator T

found from solving equation (4) . These estimators depend

on the value of k which is chosen. The influence curve of

the general M-estimator in the case where F is symmetric is

given in Andrews et al, along with the statement that the

influence curve is much more complicated in the asymmetric

case. The influence curve is proportional to the function

~‘ ( x ;  k). A plot of the influence curve of the M-estimator

with k= 1.5 is given in Figure 3.

The influence curves of the trimmed means and the Huher

estimators , which one notes have the same general shape ,

both give some influence to large observations. Hampel

proposed an estimator T which gave zero influence to large

observations. He used the median of the absolute deviations

from the median , which he called the median deviatio n , as

his scale estimate and chose ~‘ to be

~ (~~ ; a , b , c) ( x I  O~~’ x l a
I a a<~~x~’h 

(9)

a b~ - c
I C-

0 x ! c

- -
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These estimates , which are called hampels , depend on the

value of a , b and c which are chosen . Since I is zero f’r

I g r e a t e r  t h a n  a given cons t an t , zero influence is

g iven to an o b s e r v a t i o n  w i t h  x I g r e a t e r  t h a n  tha t c o n s t a n t .

A plot of the influence curve of the hainpel estimator with

a = 2.5 , b = 4.5 and c = 9.5 is g iven in F igure 4.

These estimators of location are useful for illus-

trating the idea of influence curves , because the results

are somewhat simp le. One importan t point to notice is that

the  e x p r e s s i o n s  fo r  the i n f l u e n c e  curves  become much simp ler

when the u n d e r l y i n g  d i s t r i b u t i o n  F is s y m m e t r i c .  In  the

f i r s t  p a r t  of the paper , power transforms which transforme d

data to normality were studied. It will now be useful to

e x a m i n e  i n f l u e n c e  c u r v e s  of t he  e s t i ma t o r s  of ~ wh i c h  we r e

given there .

First we will consider the influence cu r ve of the

Box and Cox estimate of A in  the locatio r problem. The be~

and Cox estimate is the maximizing value of the log likeli-

hood g iven in equation (2) of the previous chapter. In an

unpublished work b y Carroll , the influence curve of thi s

estimate is derived. (This derivation is given i n  t he  Ap-

p e n d i x . )  The r e s u l t s  are  s e p a r a t e d  i n t o  two cases , \ > 0  and

~ 0 . If A~ O , the influence curve is o f t he o r d e r  y l o g  y

as y V and of t h e  o rde r  log y as y~O . If ~
‘O , the

results are reversed , giving order log y as y . ‘ and 
~
.

log y cis y ~D . L o o k i n g  a t  t h e  s p e c i f i c  case  = -l , the
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influence is of the order ~~~~~ f o r  o b s e r v a t i o n s  n e a r

zero , so this estimate shoulZbe sen sitive to quite small

obse r v a t  ions i f ~ - 1 . .-\ p l o t  t ’f t he i n 1 1 t n - n  ce c i i  i v ~~ ~ ‘

the Box and Cox estimate with A -l is given in Fi gure 5.

Next , the A n d r e w s  and A t k i n s o n  e s t i m a t e s  are con-

sidered. The influence curve does not exist in general for

the  Andrews  e s t im a t e , but  some i n f o r m a t i o n  can be found for

k -1. In t h i s case , more i n f l u e n c e  is g iven to obser-

vations near zero than is given by the Box and Cox estimate.

The same type  of calculations are used to find the general

influence curve for the Atkinson estimate. If we again

look at the  case A = - 1 , the  i n f l u e n c e  of an o b s e r v a t i o n

near  zero  is found  to  be of the o rde r  ( l o ~ y ) 2; t hu s i t  is
y L

also more  s e n s i t i v e  to s m a l l  o b s e r v a t i o n s  t h a n  the  Box and

Cox maximum l i k e l i h o o d  e s t i m a te .

The H i n k l e y  e s t i m a t e  is  also considered. The results

are not quite as complicated , so a general expression fo r

the i n f l u e n c e  curve  can be f o u n d .  The i n f l u e n c e  curve is

seen to depend on the derivative of the underl y ing distri-

bution and the v a l u e  w h i c h  is c h o s e n .  I t  i s  a b o u n d e d

function with three discontinuiti c s , so it is not as

sensitive to large obs erv a t i o n s  (if A > 0) or small obser-

vations (if A < 0) as the other estimates. It is still not

desirable over the other estimates , t h o u g h , because the

res u l t s  i t  g ives are no t  p a r t i c u l a r l y  r e a l i s t i c  f o r  more

c o m p l i c a t e d  m o d e l s .

-.—-~~~~
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FIGuRE 1. Influ ence  curve for mean .
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FIGURE 2. Influence curve for 10% symmetrical ly trimmed mean .
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FIGURE 3. Influence curve for M estimate , k=l .5 .
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FIGURE 4.  In f luence  curve for hampel est imate ,

a= 2 . 5 , b = 4 . 5 , c 9 .5 .
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FIGURE 5. Influence curve for the Box and Cox estimate

with A=-l.
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CHAPTER IV

RES’JLTS OF SI~CiL VF I0NS

As stated previously, one of the main purposes of this paper

is to further study the power of two of the tests presented in Chapter

II hy nerforming a series of simulations . These simulations were per-

formed using the same method as in the paper by Atkinson .

In Atkinson ’s paper , he describes simulations which were per-

formed to study the power of three of the tests which were described

in Chapter II. The three tests which he used were the Box and Cox

maxinami likelihood test TL, Andrews ’ exact test TA and his own test

T~. The simulations were based on the data from the biolog ical example

in the Box and Cox paper. h ere we chose to perform simulations using

only the Andrews test TA and the Atkinson test TD, because this made

the computations easier .

Atkinson ’s simulations were performed us ing the data from the

Box and ~ox examp le to generate normally distributed data. In order

to study the robustness of the tests , we chose to generate random

variates from three different distributions . The first of these dis-

tributions was the normal , which was chosen to reproduce the results

given in Atkinson’s paper. The other two distributions chosen have

thicker tails than the normal. The first of these was called the con-

taminated normal; this was 90 per cent ~(0 ,1) and 10 per cent N (0,2).

The other was the double exponential , which as generated had va r i a nce 

- --- -- -----“--- - -  -~~~~~~- .‘
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2. A l l  three of these types of random variates were multi plied by a

factor of .5/.- ’2.  The factor l/ v’� was chosen to give the double expo-

nential a variance of 1 and the factor .5 in the numerator was chosen

to more closely imitate the work done by Atkinson . The resulting var-

i ances were . ~2S for the normal , . L2 5 for the contaminated normal and

.5  for the double exponential .

The means for all three of the different types of random variates

were generated in the same way , directly from the Box and Cox biolog ical

data. The first step was to arrange the data into a 48xl vector 
~ ; then ,

the data were trans formed into a vector v~~~. Since we were interested in

testing the hypothesis X=-l , this value was chosen in transforming the

observations. The means used were the pred icted means 
A X (XtX) lX~~j~~.

In order to study the power of the two tests T\ and TD, the sim-

ulations were repeated with different values of ~~. To accomplish this ,

the cell means were generated in the method above wit h A - l , t ransformed

back to the original scale by taking the inverse of the Box and Cox

transformation ~~
= l/(l-~~~~) and then transformed again using the new

value of ~~. The values of A used were .~=-1 .5,-l ,- .5,-J)5 and .4. The

results of these 15 simulat ions are given on the following pages in

Tables 1 ,2 and 3, expressed as the number of 200 simulations wh i ch

resulted in significant test statistics fo r the tests T~ and T~ I~ r

all three distributions . Three different plots are also g iven in F i~~u i c s

6, 7 and ~~, one for each different distribution . As stated in the ‘.ir- r

by Atkinson , the slope of these plots indicates tu e power of the ti- -~

The results of these simulat ions agree with At~ inson ’ s resul t--

for the norma l case , since the power of the test T1) is greater than

the power of the test T
A for a l l  5 values of . The r e s u l t s  t e r  t~ ie
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other two distributions are partly consistent with the normal case,

because the pot-Icr of TD is larger than the power of TA at all values

of A for both different distributions. Away from the null hypothesis ,

though , there is a loss of efficiency since the power is lower for

both T~ and TA than in the normal case. There is also a loss of validity

at the null hypothesis, because the intended 5 per cent tests become

closer to 30 per cent for the Atkinson test and 10 per cent for the

Andrews test. 

~~~-- - - --
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TABLE 1

Power of the two tests for testing A = - l . Data generated
from the norma l distribution with A =k. Number out of 200
simulations si gnificant at the 5 per cent level.

TA TD

k + - + -

-1.5 0 103 0 181
-l 5 2 9 8
- .5 91 0 175 0H - .05 184 0 200 0

.4 185 0 200 0

TAB LE 2

P~~ cr of the two tests for testin g A - 1 . Data generated
from the contaminated normal dist ribution with A =k. Number
out of 200 simulations si gnificant at the S per cent level.

TA TD

k + - + -

-1.5 0 64 0 185
-l 7 11 7 56
- .5 46 0 125 34
- .05 111 0 lbS 34

. 4  116 0 173 2 2

- - -

~

---

~

—..
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— TABLE 3

Power of t h e  two t e s t s  fo r  testi ng A =- 1 . Data generated
from the double exponenti al distri bution with A =k. Number
out of 200 simulations si gnifican t at the 5 per cent level.

‘A TD
k + - + -

-1.5 0 59 0 180
- l 4 6 5 54
- .5 40 1 122 36
- .05 9 2  0 163 36

.4 105 0 166 27

- — ~~~~~~ -

_ _  --~~~~- ---
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FIGURE 6. Power of the two statistics for testing x - 1  us ing
normally distributed data. Proportion of 200 simulations

significant at the 5 per cent level. A denotes TA~ 
Andrews’

exact test and D denotes Atkinson ’s test.
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FIGURE 7. Power of the two test statistics for testing A - l

using contaminated norma l data.
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FIGURE 8. Power of the two test statistic s for testing A=-l

using double exponential data.

— .~ .~ C -P t ci ‘a -O Cl —C Cl 0 0 0 C, 0 CC ‘3 Cl Cl  0 

0 Cl

~ 1’ a a
0

S S

C-. I S

= O I
a .

~~. a a0 V ’ S
U S
a I

a a

a U

‘
S 

-- 
~
--- - 

~~~
-- • 

~~~~~ 
.
~~~

-- •
~~ 

~~~~~~~~~~~~ 



--~ 
- -~~~~~~~~~~~~

- _ - -~~~~~~~~~~~~~~~~~~~~~~~

CHAPTER V

CONCLUSI ON

In the first par t of the paper , four different estimates for the

opt Lma l va lue of A were studied: the Box and Cox , Andrcws, Atkinson

and lliiukley est iniates . Test stat i st ics for test i iig \ =  were also

derived for the Box and Cox, Andrews and Atkinson cas -s . Ihe results

of a numerical example in the paper by A tk in son gave an indication of

the power of the three tests T1 -the  BOX and Cox test, T
x
- the Andrews

test and T1)- the Atkinson test for normal Iv distributed d a t a .  Atkinson

conc l uded th a t h i s  s t a t i s t i c  T1) was s ini i lar  in  powe r to  the s t a t i s t  Ic

and tha t both were g rea te r  in power than the s ta t  i st ic

-\ s e r i e s  of s bnu l at ions was per !.onned to expand on t he resul t s

g i yen in the paper by Atkinson . The purpose 01 these s irnu I at ions was to

stud y the robustness , as we l l  as the power , of the tests  TA and T~ .

l~1icreas Atk inson  used only n o r m a l l y  d i s t r i b u t e d  (Iota , the 5 i mu l a t i o n s

here inc lud ed norma l I y d i  st r ihuted  dat a , data f rom a contam i nated norma l

( l i s t  r i b t i t  ion and doubl e exponen t i a l  da ta .  ilue results here indicated

tha t  the 1x~~e1’ of l’~) is greater  than the power of T \ for  a l l  three types

of ( l i s t  r ibu t b U S  . For the contam ina ted  normal 011(1 (1001) le exponen t ia 1

dist  r i h i i t  ions , though , the Atkinson test shows an extreme loss of

va 1 idi ty at  the n u l l  h ypo t hesis and the Andrews test shows a s l i ght  loss

of t’a I i d i t t y  . Away Iron the n u l l  hypothcs is , the An dr ews tes t  shows an

L -~~~~~ --- - -~~~~~~ --- --- ~~~~~ - - -  ~~~- - 
-
‘ 

——-- 
~~~~~~~~~~~~~~~~~~~
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extreme loss of e f f ic iency  and the A t k i n s o n  test shows a slight loss

of efficiency .

Since the contaminated normal and double exponential distributions

both have heavier tails than the norma l , some problems were expected

when these distributions were considered . Since the Andrews test is an

exact t- test , the loss of efficiency would be expected , because the

usual t-tests display this loss of efficiency away from the null hypo-

thesis. The loss of validity of the Atkinson test should also be expec-

ted from examining the influence curve, becau se qu i t e  large influence

is given to both large and small observations when A - l  (which is the

null hypothesis). ThU S the conclusion is that the two tests are not

very robust to heav ier tailed distribut ions than the normal , becau se

of the above mentioned losses of validity and efficiency . 

~~~~~~~~~~



APPENDIX

The Influence Curve for the Box and Cox Estimate

The Box and Cox estimate is the value which maximizes the log

likelihood function

L max( A ) = (A - l )  E log ‘
~~

- 
~~~ iog{~~~y~~ - (1~~~ (A) ) 2 }

To maximize this function , we take derivatives with respect to A and

let n -
~ ~~ . Evaluating this derivative at the “true” value A 0, we obtain

0 = lim -~ - L m ax(X)~ A=A 0

= lim (-n~~~ Au~~ + ~~~ ~~~~~~~~

n-SO,

+ (~~~~A~~~~)E log y~)(A=x 0
(A x a

= E log 
~~S

2 (F,A0) 
~ o~ o) - T(F , A

0
) ~~~~~ }

where
(A 

~~)

E r Y  T(F) =~~~‘ S(F)

and ( A )
E y 0 - T(F) 2 - -

S(F) ) ] —

Now, to compute the influence curve , we let A 0 = A (F )  for g iven F and

define the following equations :

(A(F) ) T F
~ S(P)

(A (F)) - T F  2

2 
- I

S (F)

_ _ _ _ _ _ _ _ _  -~~~~-
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~ 3
(y ;T( F)  , S(F) ,A ( F ) )  = log y - - 

2 
~~(X(F)) - T(F)) ~~ ~(A(F))

S (F)

Then the functionals T(F) , S(F) and A(F) are the solutions to the system

of equations

f~p~(y;T(F),S(F),X( F ))d F (y) = 0

for i = 1, 2 , 3 .

To derive the influence curve , we first need to define the distribu-

tion functions

F~(y) = (l-6)F0(y) + c~~(y)

where
(0 y < x

6 (y) =~~~x 
~

Then the above system of equations becomes

f~p 1(y ;T(F~ ) ,S(F~) ,A (F~))dFj y) = 0

which implies that

(l~~c)f qJ ~~(y;T(F~~) ,S(F
~~

) ,A (F
~

))dF o
(y)

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 0

or
( 1-c)flp~ (y;T(F ~) ,S(F~) ; A ( F~) )d F0 (y)

+ e
~
pj(x;T(F c),S(F c) , A (F c)) = 0 .

Nex t we take derivatives with respect to c and evaluate at c = 0 to

give

- 

~
J
~
(x;T(F o) ,S(F0) , k(F 0

))

= a 1~ [ ~ - T(F
~~

) 
~~~~~

J + a2~
[ ~ S(F~) ~~~~~~ 

+ a
3~~ E ~ - A ( F ) L

AC~~~ C



-
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where the a1- ,  a2~ and a3~ are coefficients which will  be found from

the above equations.

-E  1 
- 

1a11 - 
~~~~~~~~~ 

- S(F)

= E 
(A(F))  

- T(F) 
- —

~~
--- E~

’ T(F) = 0a21 -s2 (F) S(F) S(F)

A (A)_~~~~a (A) ~~y l o g y - ya31 aA~~ AA (F) X(F)

- ~~~~~~~~~~~ y) 
- 

T(F)
A(F)

- E 2( (A (F)) - T(F)) = 0a12 - S(F)

- E -2 y (A (F) ) 
- T(F))2 1 

- - 
2

- S(F) S(F) - S(F)

2( (A( F) ) 
- T(F) ) B (A)

a32 = E S2(F) ax y x (F)
I C

- 
2 (A(F) ) 

- 
y

X (F)
10g ~ 

- y
(A (F ) )

- 

2 E(y A FS (F)

a = E (a/ aA )y~~~~~ = 
(a/aA)Ey~~~~~ = 013 s2 (F) S2 (F)

a23 = E(y~~~~ - T ( F ) ) ( ~~~~y~~~~~~~ )
S (F)

= 
1 ~ (A (F) ) - (A (F) ) B y A~~

) log 
~
, 

- ________a33 2 [ 
~ ~ax ~

‘ ax~ A’F~ 2S (F) A (F)

- 
(A ( F ) ) a y  ~1og ~ - (y A (F) _ 1)) B (A (F))

]ax A 0 (F) A 2 (F) ax
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Thus the above equations become

-

- 0 a31 
- 

~~~~~ 
T(F~) -

0 ~-~~- a32 ~~ 
S( F ) =

a0 a23 a33 -~-- A ( F ~)

To get the solutions of the matrix equations and find the influence

curve , take the inverse of the matrix to give
- — 1 -1-

~~
-T(F

~
) - ~-~~- 0 a31

-

~~~~~ 
S(F~) = - 

0 - ~ -
(f;~

_ a32 ~2

- 
~~~~~ 

A ( F~) 
- 

0 a23 a33 
-

Now we see that the influence curves are functions of the

(A (F) ) T (F)
~~
1

(y ;T(F
0

) , S(F
0

) , A(F
0

)) = S(F)

is of order yA ,

~2
(y ;T(F0) ,S(F0) ,~ (F0)) = (~~(A ( F ) ) ~ T(F) )~~ -

is of order ~2A and

~3(y;T(l~0),S(F0) , A (F 0)) = log y - ~~ (y (A ( F ) )~ T( F ))  ~~S ( F)

is of order y2A log y.

Therefore, if A > 0 , the influence curve is of the order y ZA iog y as y -
~

and order log y~ as y -~ 0. If A < 0, the results are reversed to g ive order

log y as y -
~ 

and order j y 2
~’log y~ as y -

~ 0. An in dication of t hese resu l t s

is given in the plot of the influence curve for X~~ -l which is g iven in

Figure 5.

- 
__ _
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